Tubulobulbar complex: Cytoskeletal remodeling to release spermatozoa
نویسندگان
چکیده
Tubulobulbar complexes (TBCs) are actin-based structures that help establish close contact between Sertoli-Sertoli cells or Sertoli-mature germ cells (spermatids) in the seminiferous tubules of the testes. They are actin-rich push-through devices that eliminate excess spermatid cytoplasm and prepare mature spermatids for release into the tubular lumen. Just prior to spermiation, the elongated spermatid interacts with the Sertoli cell via an extensive structure comprising various adhesion molecules called the apical ectoplasmic specialization which is partially replaced by the apical TBC, on the concave surface of the spermatid head. The sperm release process involves extensive restructuring, namely the disassembly and reassembly of junctions at the Sertoli-spermatid interface in the seminiferous epithelium. Based on the presence of different classes of molecules in the TBCs or the defects observed in the absence of TBCs, the main functions attributed to TBCs are elimination of excess spermatid cytoplasm, endocytosis and recycling of junctional molecules, shaping of the spermatid acrosome, and forming transient anchoring devices for mature spermatids before they are released. This review summarizes the recent findings that focus on the role of TBCs in cell cytoskeleton restructuring during sperm release in the testes and the molecular mechanism involved.
منابع مشابه
Disruption of tubulobulbar complex by high intratesticular estrogens leading to failed spermiation.
Spermiation is the final phase of spermatogenesis leading to release of mature spermatids into the lumen of the seminiferous tubules. Morphologically, it involves a series of events, namely removal of excess spermatid cytoplasm, removal of ectoplasmic specialization, formation of tubulobulbar complex, and final disengagement of the spermatid from the Sertoli cell. Previous studies in our labora...
متن کاملThe acrosome-acroplaxome-manchette complex and the shaping of the spermatid head.
A combination of exogenous contractile forces generated by a stack of F-actin-containing hoops embracing the apical region of the elongating spermatid nucleus and an endogenous modulating mechanism dependent on the spermatid-containing acrosome-acroplaxome-manchette complex may play a cooperative role in the shaping of the spermatid head. In addition, the manchette is a key element in the trans...
متن کاملI-1: Effect of High Intratesticular Estrogen on
Background: The presence of estrogen receptor beta and aromatase in the germ cell has highlighted the physiological role of the traditionally female hormone, estrogen, in spermatogenesis. Estrogen receptor alpha knockouts and aromatase knockouts have further accentuated the role of estrogen in germ cell maturation. To delineate effects of high intratesticular estradiol in the seminiferous epith...
متن کاملCortactin depletion results in short tubulobulbar complexes and spermiation failure in rat testes
Tubulobulbar complexes are actin-related endocytic structures that form at sites of intercellular attachment in the seminiferous epithelium and are proposed to internalize intact junctions. In this study, we test the prediction that altering the structure/function of tubulobulbar complexes results in failure to release mature spermatids from Sertoli cells. We used an in vivo knockdown strategy ...
متن کاملSertoli-Sertoli and Sertoli-germ cell interactions and their significance in germ cell movement in the seminiferous epithelium during spermatogenesis.
Spermatogenesis is the process by which a single spermatogonium develops into 256 spermatozoa, one of which will fertilize the ovum. Since the 1950s when the stages of the epithelial cycle were first described, reproductive biologists have been in pursuit of one question: How can a spermatogonium traverse the epithelium, while at the same time differentiating into elongate spermatids that remai...
متن کامل